Motion Classwork

1.

For $t \ge 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by

$$v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$$
. The particle is at position $x = 2$ at time $t = 4$.

- (a) At time t = 4, is the particle speeding up or slowing down?
- (b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.
- (c) Find the position of the particle at time t = 0.
- (d) Find the total distance the particle travels from time t = 0 to time t = 3.

2.

An object moves along the x-axis with initial position x(0) = 2. The velocity of the object at time $t \ge 0$ is given by $v(t) = \sin(\frac{\pi}{3}t)$.

- (a) What is the acceleration of the object at time t = 4?
- (b) Consider the following two statements.

Statement I: For 3 < t < 4.5, the velocity of the object is decreasing.

Statement II: For 3 < t < 4.5, the speed of the object is increasing.

Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.

- (c) What is the total distance traveled by the object over the time interval 0 < t < 4?</p>
- (d) What is the position of the object at time t = 4?

3.

A squirrel starts at building A at time t = 0 and travels along a straight wire connected to building B. For $0 \le t \le 18$, the squirrel's velocity is modeled by the piecewise-linear function defined by the graph above.

- (a) At what times in the interval 0 < t < 18, if any, does the squirrel change direction? Give a reason for your answer.
- (b) At what time in the interval $0 \le t \le 18$ is the squirrel farthest from building A? How far from building A is the squirrel at this time?

- (c) Find the total distance the squirrel travels during the time interval $0 \le t \le 18$.
- (d) Write expressions for the squirrel's acceleration a(t), velocity v(t), and distance x(t) from building A that are valid for the time interval 1 < t < 10.

4.

t (seconds)	0	10	20	30	40	50	60	70	80
v(t) (feet per second)	5	14	22	29	35	40	44	47	49

Rocket A has positive velocity v(t) after being launched upward from an initial height of 0 feet at time t = 0 seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \le t \le 80$ seconds, as shown in the table above.

- (a) Find the average acceleration of rocket A over the time interval 0 ≤ t ≤ 80 seconds. Indicate units of measure.
- (b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) dt$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) dt$.
- (c) Rocket *B* is launched upward with an acceleration of $a(t) = \frac{3}{\sqrt{t+1}}$ feet per second per second. At time t = 0 seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time t = 80 seconds? Explain your answer.